145 research outputs found

    Trumpetcreeper response to selected herbicides

    Get PDF
    Field studies were conducted to; (1) attempt trumpetcreeper [Campsis radicans (L.) Seem.] control with preemergence and foliar postemergence herbicides labelled for use in no-till soybeans [Glycine max (L.) Merr.], (2) determine the effect of repeated paraquat (1,1\u27-dimethyl-4,4\u27-bipyridinium ion) applications and, (3) attempt trumpetcreeper control in non-cropped areas. Trumpetcreeper was not controlled by preemergence herbicides labelled for use in soybeans. Foliar postemergence herbicides were applied when trumpetcreeper shoots were approximately 1 meter long. Glyphosate [N-(phosphonomethyl)glycine] gave the most complete control of trumpetcreeper of the postemergence herbicides labelled for use in soybeans. Acifluorfen [5-(2-chloro-4-(trifluoromethyl)phenoxy)-2- nitrobenzoic acid], and dinoseb (2-sec-butyl-4,6-dinitrophenol) alone or in combination with naptalam ([N-1-naphthylphthalamic acid) or alachlor [2-chloro-2\u27 ,6\u27-diethyl-N-(methoxymethyl)acetanilide], gave initial trumpetcreeper control, but regrowth occurred quickly. Repeated paraquat applications did not control trumpetcreeper. Regrowth occurred when paraquat was applied at 4 or 2 week intervals; however, total shoot necrosis was observed after the third treatment, regardless of the application interval. Applications at 2 week intervals prevented the formation of leaves. Repeated paraquat applications did not appear to reduce trumpet creeper stands the season following applications. Several herbicides were evaluated for trumpetcreeper control in non-cropped areas. Dicamba (3,6-dichloro-o-anisic acid), 2,4-D [(2,4-dichlorophenoxy)acetic acid], glyphosate, SC-0224 (chemistry not released), 2,4,5-T[(2,4,5-trichlorophenoxy)acetic acid], and XRM-4660 (chemistry not released) gave near complete control during the season of application. Dicamba, fosamine [ethyl hydrogen (aminocarbonyl)phosphonate],glyphosate, and SC-0224 gave near complete control the season following applications with no regrowth

    Self-Scaling Evolution of Analog Computation Circuits

    Get PDF
    Energy and performance improvements of continuous-time analog-based computation for selected applications offer an avenue to continue improving the computational ability of tomorrow*s electronic devices at current technology scaling limits. However, analog computation is plagued by the difficulty of designing complex computational circuits, programmability, as well as the inherent lack of accuracy and precision when compared to digital implementations. In this thesis, evolutionary algorithm-based techniques are utilized within a reconfigurable analog fabric to realize an automated method of designing analog-based computational circuits while adapting the functional range to improve performance. A Self-Scaling Genetic Algorithm is proposed to adapt solutions to computationally-tractable ranges in hardware-constrained analog reconfigurable fabrics. It operates by utilizing a Particle Swarm Optimization (PSO) algorithm that operates synergistically with a Genetic Algorithm (GA) to adaptively scale and translate the functional range of computational circuits composed of high-level or low-level Computational Analog Elements to improve performance and realize functionality otherwise unobtainable on the intrinsic platform. The technique is demonstrated by evolving square, square-root, cube, and cube-root analog computational circuits on the Cypress PSoC-5LP System-on-Chip. Results indicate that the Self-Scaling Genetic Algorithm improves our error metric on average 7.18-fold, up to 12.92-fold for computational circuits that produce outputs beyond device range. Results were also favorable compared to previous works, which utilized extrinsic evolution of circuits with much greater complexity than was possible on the PSoC-5LP

    Leveraging the Intrinsic Switching Behaviors of Spintronic Devices for Digital and Neuromorphic Circuits

    Get PDF
    With semiconductor technology scaling approaching atomic limits, novel approaches utilizing new memory and computation elements are sought in order to realize increased density, enhanced functionality, and new computational paradigms. Spintronic devices offer intriguing avenues to improve digital circuits by leveraging non-volatility to reduce static power dissipation and vertical integration for increased density. Novel hybrid spintronic-CMOS digital circuits are developed herein that illustrate enhanced functionality at reduced static power consumption and area cost. The developed spin-CMOS D Flip-Flop offers improved power-gating strategies by achieving instant store/restore capabilities while using 10 fewer transistors than typical CMOS-only implementations. The spin-CMOS Muller C-Element developed herein improves asynchronous pipelines by reducing the area overhead while adding enhanced functionality such as instant data store/restore and delay-element-free bundled data asynchronous pipelines. Spintronic devices also provide improved scaling for neuromorphic circuits by enabling compact and low power neuron and non-volatile synapse implementations while enabling new neuromorphic paradigms leveraging the stochastic behavior of spintronic devices to realize stochastic spiking neurons, which are more akin to biological neurons and commensurate with theories from computational neuroscience and probabilistic learning rules. Spintronic-based Probabilistic Activation Function circuits are utilized herein to provide a compact and low-power neuron for Binarized Neural Networks. Two implementations of stochastic spiking neurons with alternative speed, power, and area benefits are realized. Finally, a comprehensive neuromorphic architecture comprising stochastic spiking neurons, low-precision synapses with Probabilistic Hebbian Plasticity, and a novel non-volatile homeostasis mechanism is realized for subthreshold ultra-low-power unsupervised learning with robustness to process variations. Along with several case studies, implications for future spintronic digital and neuromorphic circuits are presented

    Cultivating Authentic Leaders: Toward Conceptual Coherence and Sustainable Practice

    Get PDF
    The purpose of this paper is twofold. One is to better understand the contested construct of authentic leadership and its cultivation and practice. The other is to offer a conceptual framework for practicing sustainable authentic leadership. Based on a review of authentic leadership literature with a focus on its sustainability, we introduce a conceptual framework through a lens of an ecological model to capture the dynamics of individual and systems perspectives. Practicing sustainable authentic leadership is not a simple act; rather authentic leaders need to embrace paradoxes to navigate today’s complex systems and to find new ways to create positive and valuable roles both in and outside of their organization. In addition to a new conceptual framework, this paper offers approaches for leaders and educators to develop and practice authentic leadership. It also provides opportunities for values-based leadership community members to further discuss and examine sustainable authentic leadership approaches with the proposed conceptual framework

    CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD‐GROWTH AMAZONIAN FOREST

    Get PDF
    Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1‐km transects of well‐drained old‐growth upland forest in the Tapajós National Forest near Santarém, Pará, Brazil (2°51′ S, 54°58′ W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh) ≥10 cm. The mean (and 95% ci) aboveground live biomass was 143.7 ± 5.4 Mg C/ha, with an additional 48.0 ± 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 ± 0.62 Mg C·ha−1·yr−1, the net result of growth (3.18 ± 0.20 Mg C·ha−1·yr−1 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 ± 0.09 Mg C·ha−1·yr−1, reflecting a notably high stem recruitment rate of 4.8 ± 0.9%), and mortality (−2.41 ± 0.53 Mg C·ha−1·yr−1 from stem death of 1.7% yr−1). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 ± 1.0 Mg C·ha−1·yr−1. The presence of large CWD pools, high recruitment rate, and net accumulation of small‐tree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Furthermore, the hypothesized sequestration flux from CO2 fertilization (\u3c0.5 Mg C·ha−1·yr−1) would be comparatively small and masked for considerable periods by climate‐driven shifts in forest structure and associated carbon balance in tropical forests

    Closing the Loop: Communication for Transformation of Geoscience Teaching Practice

    Get PDF
    The goal of the GER Framework is to improve teaching and learning about the Earth, by focusing the power of Geoscience Education Research (GER) on the set of ambitious, high-priority, community-endorsed grand challenges outlined in this document. This goal has an underlying assumption - that research results are effectively shared with educators and are used to reform teaching practice; consistent with the feedback loop on the strength of evidence pyramid. Closing this loop is intimately tied to research theme on Institutional Change and Professional Development. However, closing this loop has a broader scope as well. Raising awareness of research results, and then applying the research results, will require engaged, respectful dialogue as well as strategic communication to extend the community of reflective practitioners and gain needed support from administrators. This chapter expands on strategies for communication

    Experimental Characterization of Space Charge in IZIP Detectors

    Get PDF
    Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run with negligible ambient radiation, the detectors were found to lose ionization stability more quickly than expected. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, first results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.United States. Dept. of Energy (Grant DE-AC02-76SF00515)National Science Foundation (U.S.) (Awards 0705052, 0902182, 1004714, and 0802575

    Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    Get PDF
    We present results on quasidi usion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two di erent detector types, with di erent phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidi usion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.United States. Dept. of Energy (Grant DE-FG02-04ER41295)United States. Dept. of Energy (Grant DE-FG02-07ER41480)National Science Foundation (U.S.) (Grant PHY-0542066)National Science Foundation (U.S.) (Grant PHY-0503729)National Science Foundation (U.S.) (Grant PHY-0503629)National Science Foundation (U.S.) (Grant PHY-0504224)National Science Foundation (U.S.) (Grant PHY-0705078)National Science Foundation (U.S.) (Grant PHY-0801712

    Synthesis: Discussion and Implications

    Get PDF
    This project was a formidable undertaking, necessary to position our community to achieve an important goal: to improve undergraduate teaching and learning about the Earth by focusing the power of Geoscience Education Research (GER) on a set of ambitious, high-priority, community-endorsed grand challenges. Working groups, through examination of the literature and with the aid of reviewers\u27 insights, identified two to five grand challenges for each of the ten research themes. The thematic grand challenges illuminate interconnected paths for future GER. Collective this creates a guiding framework to harness the power of GER to improve undergraduate teaching and learning about the Earth. While the individual theme chapters lay out the rationales for those large-scale grand challenge research questions and offer strategies for addressing them, here the purpose is to summarize and synthesize - to highlight thematic research priorities and synergies that may be avenues for research efficiencies and powerful outcomes
    corecore